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SURVEY AND EXAMPLES OF SPECIFICATION TECHNIQUES
FOR USER-COMPUTER INTERFACES

1. INTRODUCTION

Formal and semiformal specification techniques have been applied to many aspects of software
systems. The module structure, the uses hierarchy, and the process structure of a system are examples
of areas in which such techniques are useful [1,21. However, specification techniques have been far
less successful in describing the interface between a system and its user. Specification of a user inter-
face is of particular interest in the Military Message Systems (MMS) Project at the Naval Research
Laboratory, because the project attempts to specify all aspects of the behavior of a family of message
systems formally, and because the security of a multilevel secure message system is dependent on its
user interface.

This report provides a survey of techniques suitable for specifying the user interface of a system
and a detailed discussion of the relevant literature. Then, it presents a collection of examples of the
application of several representative specification techniques to a common set of examples to compare
the relative merits of the techniques.

The remainder of Section 1 discusses reasons for specifying a user interface, criteria that such a
specification should satisfy, and the application of user interface specification techniques to the MMS
Project. Section 2 describes the principal specification techniques that have been used; nearly all of
them fall into one of two classes-those based on Backus-Naur Form and those based on state transi-
tion diagrams. Section 3 provides a brief example to illustrate specifications of these two classes. Sec-
tion 4 contains a detailed survey of the specification techniques and the ways in which they have been
applied. Section 5 introduces the notation used in the examples of user interface specifications that fol-
low; and Section 6 presents those specifications. Section 7 presents some conclusions. The survey in
Sections 1 to 4 is based on Ref. 3, and the examples in Sections 5 and 6 are based on Ref. 4.

A summary of this work is given in Ref. 5, which presents conclusions about the relative merits
of the specification techniques studied. This report provides the background material that supports
those findings, including more detailed discussions of the relevant literature and complete expositions
of the actual specification examples that were studied.

1.1 User Interface

The user interface is becoming an increasingly critical aspect of software systems. The principal
problem in building computer systems used to be providing sufficient processing power; now, it is more
often providing a good user interface. Getting computers to perform processing tasks is becoming a
less serious problem, as hardware costs decrease. Instead, the major stumbling blocks now occur in
permitting the user to communicate what he or she wants the computer to do and in receiving informa-
tion from the computer in ways that are easy to assimilate. This is particularly important since an
increasing number of computer users are not trained programmers but rather specialists in some other
fields; such users are less tolerant of and less able to compensate for a poor user interface than are
computer specialists. However, the designer trying to engineer a good user interface is handicapped
without a clear and precise technique for specifying such interfaces.

Manuscript approved September 6, 1985.
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The specification of the user interface is also important because, for a user, that description is
identical to the description of the system itself. Experiments suggest that many users cannot distin-
guish the difference between changing the user interface to a system and changing the system itself [6].
For many of the people who must understand a software system, the user interface specification is the
system specification.

1.2 Desiderata for User Interface Specifications

What qualities should a specification technique for user-computer interfaces possess?

* The Specification Should Be Easy to Understand

Specifically, it should be easier to understand and take less effort to produce (and, possibly, be
shorter) than the software that implements the interface. Someone who wants to answer a question
about the behavior of a user interface should find it easier to do by reading the specification than the
code itself.

* The Specif ication Should Be Precise

It should leave no doubt as to the behavior of the system for each possible input.

* The Specification Technique Should Be Powerful

This means it should be able to express complicated system behavior in a compact and easy to
understand fashion. It should also be able to describe a wide variety of user interfaces, particularly
those beyond the traditional one line-at-a-time typed interactive terminal dialogue. This includes graph-
ical input and output, spoken communication, and analog devices (such as levers or position sensors).
It should also include concurrent interactions using more than one communication mode-for example,
spoken dialogue during manipulation of knobs and levers.

* The Structure of the Specification Should Be Closely Related to the User's Mental Model of the System

The specification should represent the cognitive structure of the user interface (the mental con-
structs the user needs to operate it) rather than the physical actions required or such implementation
details as internal data or control structures. The specification should contain the basic outline around
which the user's mental model of the system will be built. In other words, the specification should
contain a table of contents for a user manual but not necessarily the material in the manual.

The goal here is to make the structure of the specification and the structure of the user's manual
as similar as possible. Singer attempted to adhere to this goal: "In general, whenever I found a feature
or concept difficult to explain clearly [in the specification language], I took this as a signal that the
design itself was likely at fault. Whole versions of the editing requests were rejected because I could
discover no simple way of explaining them." [7]

Two simple applications of this approach arise in common practice. One is the use of BNF to pro-
vide structure to a user's manual. Many command language manuals, such as IBM's CMS manual [81
give a single section for all the rules that define some nonterminal symbol, like command line. Many
of those rules use other nonterminals, for example, file specification. File specification and other fre-
quently used nonterminals, in turn, are described in another section, and so on. A parallel example for
state diagram notations is found in user manuals that describe states of the system (usually only for a
few major states). The user is told that the system will be in, for example, the monitor command state
at some point. If he calls an editor, it will be in the editor state, and a different set of meanings will be
attached to his actions. Users are often explicitly told of such states by means of distinctive prompt
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characters. So, in two simple ways, the types of constructs often used in writing specifications or a user
interface for designers have also been used to describe those user interfaces to users.

e The Specification Should Be Easy to Check for Consistency

It should make apparent inconsistencies and oversights in a user interface design and generally
facilitate the evaluation of a user interface from its specification. Syntactic errors in the specification
should imply errors in the design; and, if possible, awkward constructs in the specification should imply
an awkward user interface. Reisner [9] and others have examined ways in which a specification of a
user interface can be used to make specific evaluations of that interface.

* The Specification Should Emphasize the Cognitive Steps the User Performs

It is the user's cognitive or information-processing actions, rather than physical actions, that prin-
cipally determine user performance and accuracy. Thus for the specification to be useful for predicting
user performance, it should describe such actions.

* The Specification Should Separate Function from Implementation

It should describe the behavior of a user interface completely, precisely, and unambiguously, but
constrain the way in which it will be implemented as little as possible.

* Ideally a Specification Should Be Useful for Simulating a User Interface

Given a specification, it should be possible to construct a prototype or mockup of the user inter-
face of a system rapidly and, perhaps (with an executable specification), automatically.

1.3 The Military Message System Family

Current software technology has provided several techniques for specifying the external behavior
of a system separately from its internal implementation. Such techniques have been applied to com-
munication between software modules with useful results, but they have been less helpful for specify-
ing the interactive communication between a user and a system in an understandable fashion. In the
MMS Project [101, semiformal specification techniques have been used to capture the functional capa-
bilities of a family of message systems. These capabilities have been specified independently of the
user interface. How to apply such specification techniques to the user interface of a military message
system is now of interest.

A military message system with multilevel security makes particularly stringent demands on its
user interface. Experience in the Military Message Experiment [111 showed that communicating the
security consequences of an action and obtaining meaningful approval or disapproval from a user was
not easy. Because the security of a system requires the user to understand the security-relevant conse-
quences of his actions, the user interface is of special importance in secure systems.

Another reason for specifying the user interface is to make it possible to isolate codes concerned
with user-computer communication into a separate software module. *Then, one can describe and
implement different user interfaces for the same underlying system by making only localized software
changes. Different interfaces might also be provided to suit different types of users. Such a view
implies that there are two separate interfaces that must be considered. As shown in Fig. 1, the user
communicates with a user agent via a User Command Language (UCL). Once it receives a command
from the user, the user agent translates the command into a standard form-a statement in the Intermedi-
ate Command Language (ICL) -and passes that to the data manager. Information returned by the data
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User Intermediate
Command Command

USER Language Language DATA
AGENT MANAGER

Fig. I - Components of the Military Message System. (Boxes represent
software modules; lines represent data flow.)

manager in response to user requests is delivered to the user agent, which is responsible for displaying
it to the user. This division permits new systems with different user interfaces to be constructed from
an existing system with relative ease. If- the user interface is changed, only the user agent must be
modified so that it will translate from the new UCL into the standard ICL; the data manager and other
system components need not be changed (as long as they provide sufficient primitive operations for the
new UCL commands).

2. INTRODUCTION TO SPECIFICATION TECHNIQUES

2.1 Static and Interactive Languages

Most previous work on formal and semiformal language specifications has been devoted to the
specification of static languages, as opposed to interactive languages [7]. In a static language, an entire
text in the input language is (conceptually) present before any processing begins or any outputs are pro-
duced; all of the outputs are then produced together, usually after a long input text (such as a program)
has been processed. Processing of an input text is affected little, if at all, by the previous input texts.
Such is the case with the processing of the text of a computer program, and hence the field of program-
ming language compilers is where much of this work is found. This contrasts with interactive
languages, in which the system produces responses at various points during the input of a text, result-
ing in a dialogue. The input can be described as one long text, in which the computer may take actions
and produce outputs at various point during the input or as a series of brief texts, where the processing
of each input generally depends on previous processing. The user may also make use of intermediate
outputs in formulating his subsequent inputs. He may also sometimes interrupt the system and begin
entering a new statement in the input language. A specification of an interactive language must capture
more information about the behavior of the system than one for a static language. That is, it must
specify each of the system's responses and at precisely what point in a dialogue each will occur.

The language to be described in a user interface specification differs from conventional compiled
computer languages in still another way. Not only is it interactive, rather than static, but its primitive
symbols are often user actions other than entering strings of characters [12]. Such actions may include
pushing special function keys, adjusting dials, operating a digitizer, speaking, or moving one's eyes. To
keep levels of specification detail separate, terminal symbols of the high-level specification should con-
sist of high-level operations involving virtual hardware devices. "Move cursor to date field" or "select
send option" are such terminal symbols. These are then resolved into specific hardware operations at
the next lower level of specification detail. "Move cursor to date field" may be mapped into a sequence
of cursor control key operations or the manipulation of a light pen or some other scheme. That is, the
tokens of the input language of the high-level specification are coherent groups of atomic user actions
(the analogue of words in conventional languages). The lexemes are the individual user actions upon
the hardware devices (the analogue of characters). The high-level specification describes the decompo-
sition of the user interface into these tokens, and the lower-level specification describes the mapping
from tokens to lexemes.
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For the purpose of predicting user performance (i.e., accuracy, speed, and the like) or evaluating a
user interface from its specifications, it is important that the high-level specification emphasizes the
cognitive or information-processing steps the user must perform, rather than the physical actions.
Although the former are often ignored in favor of the latter, it is the cognitive, not physical, actions
that principally determine user performance and accuracy for a system [9]. Hence they are what specifi-
cations should capture in order to be useful for comparing two user interfaces.

2.2 Principal Specification Techniques for Static Languages

Two principal classes of techniques have been used for specifying static languages. One is based
on production rule grammars and yields a specification in a notation such as Backus-Naur Form (BNF)
[13]. The language is described by a set of production rules, from which all possible correct inputs in
that language can be produced. Each rule gives the definition for some nonterminal symbol. Wherever
that symbol itself appears (in the definition of some other symbol), it may be replaced by substituting
the contents of its definition. In this way, the definition of a single starting symbol ultimately yields all
legal strings in the language.

The other class of techniques is based on finite state automata and results in a state transition
diagram (or, equivalently but more amenable to computer processing, a list of transitions between the
states of such a diagram). The specification consists of a set of nodes (states) and arcs between them
(state transitions). Each transition is associated with a token in the input language. From any state,
the next input language token received causes the transition labeled with that token to occur.

2.3 Application of the Specification Techniques to Interactive Languages

Both of these types of techniques must be modified to be used for interactive (rather than static)
languages. The modifications are very similar to those made to these techniques to create compilers for
static languages. The modification of BNF consists of associating an action with each grammar rule.
Whenever that rule applies to the input language stream (received thus far), the associated action
occurs. Such actions can include prompts and other feedback to the user and also actions that involve
processing by the rest of the system (e.g., [14]).

Sta'. transition diagrams are modified in a similar way. Each transition is associated with an
action, which can include user feedback and also other processing, as with the modified BNF. When-
ever a transition occurs, the system performs the associated action (e.g., [15,16]).

Previous user interface specifications have suffered because they lacked an acceptable language for
describing the "semantics" of the interface, i.e., the actions associated with BNF rules or state transi-
tions that the system performs in response to the user's commands. Since a complete description of
such actions is in fact a specification of the entire system, putting it in the user interface specification
clutters that specification with detail that belongs at another level [17]. What is needed is a high-level
model that describes the operations that the system performs. Then the user interface specification
would describe the user interface in terms of the model, while the internal details of the model would
be described in a separate specification.

The design used in the MMS provides one solution to this problem. The Intermediate Command
Language is an abstract model of the services performed by a message system and is described in a
separate specification [18]. The user interface specification, then, needs only to specify the syntax of
the UCL as previously described and the semantics of the UCL using actions that consist of commands
in the ICL issued by the user agent to the data manager.

3. EXAMPLE

The following brief example is introduced to show what specifications in BNF and state diagram
notation look like.

5
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The send message command specified below takes two arguments, both of which are required-the
name of the message draft to be sent and the name of its desired recipient. If the user fails to enter
the necessary parameters, the system will prompt for the missing parameter(s). If the user enters
"help," he will get a description of the next parameter to be entered.

3.1 BNF Specification

Syntax: Lower case names denote nonterminal symbols, which are subsequently defined in terms
of terminal symbols. Upper case names are terminal symbols, which would be defined in a separate,
lower-level specification. Actions invoked when a rule is satisfied are places in braces.

sendcmd::=

help draft::=

--singlehelpdraft:: =

help recip:=

singlehelprecip::=

io

SEND helpdraft DRAFTNAME helprecip RECIPNAME

singlehelpdraft
singlehelpdraft helpdraft

NOTHING
HELP treply("Draft name can be...
ANYTHINGELSE [reply("Enter draft name"))

singlehelprecip
singlehelprecip help-recip

NOTHING
HELP (reply("Recipient name can be...")
ANYTHINGELSE treply("Enter recipient name"))

Note that the definition for terminal SEND, given in a lower-level specification, might be a func-
tion key or an abbreviation for the word "send" or a menu selection operation: its definition is imma-
terial to this specification.

3.2 State Diagram Specification

Syntax: Each transition between two states is shown as a labeled, directed arc between the two
nodes that represent those states. Each transition is labeled with the name of an input token and,
optionally, an action. The transition will occur if its input token is received; when it does, the system
will perform the action.

Figure 2 gives the state diagram.

sendamd

(1) Act: reply("Draft name can be...")

(2) Act: reply("Enter draft name")

(3) Act: reply("Recipient name can be...")

(4) Act: reply("Enter recipient name")
Fig. 2 - State diagram specification
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3.3 Text Representation of the State Diagram

Syntax Each state transition is represented by a line of the form

si: INP -s2 act:reply(rep);

denoting a transition from state sl to state s2 that expects input token INP and performs an action that
prints rep.

sendcmd - end

start: SEND -getdr

getdr: DRAFTNAME -get-re
get dr: HELP -getdr act:reply("Draft name can be...");
get-dr: ANYTHING-ELSE -getdr act:reply("Enter draft name");

get-re: RECIPNAME -end
get-re: HELP -getre act:reply("Recipient name can be...");
getre: ANYTHING ELSE -getre act:reply("Enter recipient name");

4. SURVEY OF SPECIFICATION TECHNIQUES

4.1 Techniques Based on BNF

The BNF notation that is used to describe static languages has been modified by various investiga-
tors to make it applicable for specifying interactive languages. This section discusses these uses of
BNF-based techniques for specifying interactive user interfaces.

Several investigators have used a form of BNF specification with an action associated with each
rule to describe a user interface to a prototype building program (often called a compiler-compiler, from
its original use in generating compilers). The system accepts a specification of a user interface in BNF
plus associated actions and then creates an implementation of that user interface. Several such systems
have been constructed, generally using a conventional programming language for specifying the actions
[14, 19, 20, 21, 221. At least one of those [21] has been used to construct widely-used, practical sys-
tems (e.g., [231), and another [201 provides the basis for an extensible data analysis language [241.
Efficient methods of parsing an input text, given a BNF, description of its language, have been studied
extensively [25, 26].

Fenchel [271 describes a prototype-builder that gives a system the ability to describe itself. It uses
a BNF specification to describe a user interface to an interpreter, which then implements that user
interface. In addition, the interpreter provides a help facility based entirely on the information in the
BNF specification.

Lawson et al. [281 propose and use a form of BNF with action descriptions, similar to those used
in the compiler-compilers, as a specification technique for describing interactive user interfaces.

Reisner [9] provides a major example of the use of BNF for describing a user interface. If some
other user interface specifications look more complex than Reisner's, it is because they express charac-
teristics of interactive behavior that Reisner did not need for her work, but are necessary in general-
the computer's responses and other actions. Reisner's BNF specification describes only the syntax of
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the input language; it gives no idea of what (if anything) the system will do as the user is entering com-
mands. It is as though she had specified a static version of her system's interactive command language.
Moreover, the system she specifies is a simple one, but it still requires a considerable number of rules.

Resiner uses BNF specifications of two user interfaces to predict differences in the performance of
their users (number and type of errors made). Embley [291 has also used BNF in a similar way but for
a simpler problem. The terminal symbols in Reisner's specifications can be arbitrary user actions,
rather than just character strings. The specifications themselves emphasize actions the user must learn
and remember (i.e., cognitive factors, as opposed to more common but less useful factors, such as
amount of hand movement). Reisner's goal is to use the specification of a user interface to evaluate the
interface itself, in particular, its cognitive simplicity. Cognitive simplicity leads to two substantive specific
criteria: string simplicity and structural consistency. String simplicity is easy to determine from a specifica-
tion. It is the length of terminal strings (shorter is considered better). This criterion can be applied
equally well to BNF- and state diagram-based specifications, and it does not depend on the choice of
nonterminals. Reisner's interpretation of her structural consistency criterion, however, is more subjec-
tive. Intuitively, structural consistency means that the rules needed to describe similar situations in the
user interface are themselves similar. Reisner's definition of structural consistency can be reformulated
as: look for grammar rules with similar left-hand sides and see to what extent their right-hand sides are
also similar (more similar means more structurally consistent). This works for either BNF- or state
diagram-based notations, but it does depend on the choice of nonterminals. Since BNF notations often
require more nonterminals, while state diagram notations encourage a specifier to use fewer, the choice
of notation indirectly bears upon this criterion.

Shneiderman [301 describes a new type of BNF-based grammar in which each nonterminal symbol
is associated with either the user or the computer (or one of several parties, in a multiway conversa-
tion). This method actually appears to be the BNF-based analogue of Singer's state diagram-based
notation [7]. In state diagram notations other than Singer's, each transition is labeled with a user input
(which determines which transition will be selected) followed by a computer response. Singer instead
permits only a single action (which could either be a user input or a computer response) on each transi-
tion, and then he allows such transitions to be combined in arbitrary ways. Shneiderman achieves a
comparable result by permitting a composite nonterminal to be defined in a grammar rule as an arbitrary
combination of computer- and user-labeled nonterminals.

In fact, conventional state diagram-based notations can accommodate all but one of the possibili-
ties that Shneiderman's notation permits-and that one case yields an anomalous specification. The
usual state transitions contain a user input followed by an arbitrary combination of computer actions (or
no action). The only case that a combination of such transitions cannot describe is Shneiderman's
notation, that would be described as:

greeting::= computer: "hello"
computer: "how are you".

This says that the nonterminal greeting expands into one of either "The computer says "hello" or "The
computer says "how are you." Without any specification of the user input, however, this gives no indi-
cation of how the computer will decide which of the two responses to give. So this case does not yield
a very useful specification. (A more conventional and more useful specification would be:

greeting::= user: "short greeting please" computer: "hello"
user: "long greeting please" computer: "how are you"

8
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which is straightforwardly expressible in conventional state diagram notation.) Shneiderman does not
use the anomalous case above in any of his examples, but it is the only one in which his new grammar
provides additional expressive capability. Shneiderman's notation requires a specification to contain one
extra layer of nonterminal symbols (at the level immediately above the terminal symbols) to associate a
party (user or computer) with each terminal. Finally, Shneiderman's goal of moving both sides of the
dialogue into the syntactic domain could be satisfied simply by considering replies from the computer to
be part of the grammar specification in a state transition diagram rather than simply one of a large class
of arbitrary "semantic actions."

Shneiderman [30] also addresses the problem of specifying several important aspects of interactive
user interfaces applicable to modern display terminals, but does not give any substantive insights into it.
For describing visual attributes of CRT characters (e.g., intensity, underlining), he gives a trivial set of
BNF productions. For specifying multiple windows on a display, he gives a declaration, but he does not
say how to use it in the grammar. Each window has a starting symbol. It is not clear whether the start-
ing symbol expands into the dialogue for that window or how else the dialogue is generated. If it is
from the starting symbol, then there will be several simultaneous dialogues, and the method does not
say how to indicate which of them gets which of the user's inputs. A better alternative is for each
computer-initiated nonterminal to specify the name of a window into which the expansion of that non-
terminal will be placed. That is a reasonable notation, but it is not very different from conventional
usage.

There are two general problems with BNF-based techniques. One is that interactive prompting,
error handling, and correction that must occur at particular points in a dialogue are awkward to specify,
because controlling exactly when a grammar rule is satisfied often requires introducing many artificial
intermediate constructs. It is sometimes difficult in BNF to indicate exactly when something occurs
(that is, after exactly what has been received. One remedy is to introduce additional delimiter symbols
and associate actions with the recognition of these symbols. Another problem is finding a BNF
representation for the counterpart of optional "detours" in a state diagram (as might be used to describe
help functions or ignored inputs that return the user to the state he was in before the detour). The
BNF technique is to introduce a nonterminal for each detour. One of the definitions for such a nonter-
minal is always a null input (since the detour is optional). Unfortunately, this approach often compli-
cates a BNF specification considerably more than its counterpart does a state diagram. (The example
given in Section 3 of this report illustrates this situation.)

4.2 Techniques Based on State Transition Diagrams

A number of investigators have used techniques based on state transition diagrams to specify
interactive user interfaces. Since the concept of time sequence is explicit in state diagram notations
(while it is implicit in BNF-based notations), the former are more suited to describing when events
occur. Most of the specification techniques based on state diagrams also include some special syntactic
features to make interactive languages easier to represent, but these features differ considerably among
the techniques. As a result, these notations vary widely in their expressive power, ranging from simple
finite state automata to Augmented Transition Networks [16] which are equivalent to Turing Machines.
This section examines these specification techniques and their applications.

One of the most important differences among state diagram-based notations is the ability of one
diagram to call upon another, much as a program can make a procedure call. This is analogous to using
nonterminal symbols in BNF-invented intermediate constructs that permit the specification to be
divided into manageable pieces. Introducing nonterminals and using separate diagrams to recognize
them is important for describing nontrivial systems. Without it, a specification must consist of a single
diagram, which, for any but a trivial system, is complex and unwieldy. With the introduction of non-
terminals, instead of labeling a transition with a single token to be recognized, it can be labeled with the
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name of a nonterminal symbol. That symbol is, in turn, described by a separate state transition
diagram. This makes complex diagrams easier to understand. Singer [71 gives a convenient syntax for
describing calls upon subdiagrams, similar to that for procedure calls in conventional programming
languages.

One of the principal virtues of state diagram notations is that they make explicit precisely what the
user can do at each point in a dialogue and what its effect will be (by giving the transition rules for each
state). Feyock [31] makes good use of this property by using a computer-readable representation of the
state diagram specification of a system as the input to a user help facility for that system. Based on the
state diagram and the current state, the system can answer such questions from users as "What can I do
next?" "Where am I?" and "How can I do ... ?" Darlington et al [321 suggest that state diagrams provide
a good representation of users' cognitive models of interactive systems. Guest [33] observed that pro-
grammers preferred a state transition diagram-based front end for a specification interpreter to a BNF-
based one. State diagrams also make user interface problems such as character-level ambiguity [34]
easy to discover. Brown [351 attempts to relate formal properties of a state diagram to properties of the
corresponding user interface, much as Reisner [91 does for BNF, but without experimental validation.

Introducing subdiagrams for nonterminals means that the notion of the user's current state must
be expanded to include the state in the current subdiagram, the name of that subdiagram, the state and
subdiagram from which it was called, etc., much like the stack of saved environment frames that results
from a series of procedure calls. The full description of "where the user is" in a dialogue thus
comprises this entire stack (as Denert [36] and Feyock [31] explicitly recognize).

The use of nonterminal diagrams can also lead to ambiguities in the specification of an interactive
user interface in much the same way that the use of nonterminals in BNF can. Two types of nondeter-
minism can occur. The first, called here apparent nondeterminism, denotes a system that appears to be
nondeterministic when viewed from its top-level specification (i.e., with nonterminals), but can (ulti-
mately) be implemented deterministically (when all the nonterminals are expanded into terminal sym-
bols). For example, consider a system that accepts two commands: an MSG followed by a FORMAT
constitutes a request to print the message MSG using the indicated format. An MSG followed by a
DESTINATION requests that the message be sent to the indicated destination. This can be specified
with the two commands treated as nonterminals, each described in its own diagram. The main diagram
would then call two other diagrams to recognize those two commands (syntax follows that of the exam-
ple in section 3 of this report).

start: print -end
start: send -end

Nonterminal print is defined in the following separate state diagram:

start: MSG -getfmt
getfmt: FORMAT -return

and send is defined by:

start: MSG -getdest
getdest: DESTINATION -return.

The problem is that after the user enters an MSG, the state of the system is ambiguous. Since
action need occur until after the next input, the system can easily be implemented with a scheme
remembers both states and waits for the user's next input to decide from which to continue. The
problem here is that the state of the system after the first input cannot be described simply. This
tion occurs in BNF too, but there is no explicit concept of state there.
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The second type of ambiguity, called here real nondeterminism, results in the specification of a
genuinely nondeterministic system. It arises because when actions are associated with state transitions,
it is possible to specify several different actions, any of which might occur in response to the same input
symbol. For example, the diagram for print above could be replaced by:

start: MSG -getfft act:reply("What format do you want to print in?");
get fmt: FORMAT -return

and that for send replaced by:

start: MSG -getdest act:reply("Where do you want to send it?");
getdest: DESTINATION -return.

This specifies a system in which, as soon as the user enters an MSG, One of two prompts is printed-but
the input from the user that the system needs to decide which of the two prompts it should print is not
yet available. (An implementation for a static language could simply wait until it received enough input
to decide between the two outputs.) State diagram-based notations that allow calls for nonterminals
inherently permit this sort of nondeterminism, since the conflicting actions appear in different (nonter-
minal) diagrams. It remains the specification writer's responsibility to see that the system specified is
realizable with a deterministic machine.

Conway [15] presents an early use of a notation based on state transition diagrams in which an
action is associated with each transition. His object is to construct a compiler for a static language.
Hence, most of the actions associated with his state transitions generate intermediate code (rather than
performing interactive tasks, such as displaying a message to the user). His notation permits one
diagram to call another for analyzing a nonterminal (much like a procedure call). Conway recognizes
that this can cause ambiguities, as previously discussed, and gives conditions sufficient to prevent them.

Woods [16] also describes the use of a state transition diagram notation for analyzing a static
language. His notation includes two extensions: the action associated with each transition manipulates a
(global) data structure that will represent the translation of the input; and the conditions for making a
state transition can be arbitrary Boolean expressions (not just names of tokens or nonterminals to be
recognized, but also expressions depending on the data structure). As with Conway [15], one diagram
can call another for recognizing a nonterminal.

An early application of state diagram-based notation to interactive (rather than static) languages is
provided by Engelbart and English [37]. Their notation is difficult to follow, and they do not discuss it
in detail. They do not mention the possibility of using nonterminal symbols in their specification.

Parnas [38] proposes using "terminal state diagrams" for describing user interfaces for interactive
languages. He introduces the notation of terminal state (as opposed to complete state), which is similar
to the difference between syntax and semantics in other language specifications. A terminal state is "all
system conditions (relative to a given user) in which the set of interpreted messages, and the set of
interpretations is constant" (i.e., a particular syntactic construct). The content of a system response to a
user can vary within a single terminal state (i.e., various semantic responses to the same syntactic con-
struct). A terminal state transition diagram, then, describes the changes between terminal states as a
user interacts with the system. Parnas' examples show only simple cases, and the paper does not
address how this scheme would be extended for less trivial cases. The simple syntax given is adequate
for the examples in the paper, but it would have to be extended to describe more realistic systems.
Since it does not include nonterminals, the nondeterminism problems mentioned above do not arise.
In addition, the specifications do not describe any system actions other than displaying messages to a
user.
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Barnett [39] also defines the user interface for a simple with a state diagram. Foley and Wallace
[12] advocate the use of a state transition diagram to represent the user interface of an interactive sys-
tem. While their notation is clear and easy to understand, they do not examine the specification prob-
lem in much detail. Denert [36] uses state diagram notation to describe and implement a simple user
interface. Dwyer [40] uses a state diagram representation as the input to a simple program that directly
implements the user interface described by the diagram. Kasik [411 proposes a triply-linked tree as an
alternative to conventional state diagrams. For the menu-oriented system he describes the tree pro-
vides a data structure that can be transversed by a deterministic algorithm. Thus it can be executed
more efficiently than conventional state diagrams containing nondeterminism. For the purpose of
describing a user interface, though, it offers no advantages and introduces unnecessary complexity (the
extra links) and unnecessary constraints (the one item per level, menu-driven style of interaction).

The standard for the MUMPS interactive computer language [42] provides an example of a specif-
ication of a non-trivial system using a state diagram-based notation. Nonterminal symbols are defined
in 'separate diagrams, and the authors recognize and exploit the resultant apparent nondeterminism.
The specification gives a precise, detailed description of the rules by which the automation that exe-
cutes the diagrams operates. It includes the deterministic algorithm for executing such nondeterminis-
tic diagrams (i.e., step through the diagram for one nonterminal until a dead end is reached, then go
back to try another nonterminal). This description eliminates the vagueness and informality seen in
some other states diagram-based specifications. The notation also introduces some additional criteria
for selecting a transition. Each call upon a separate diagram for a nonterminal can return one of up to
four possible constant values, and the calling diagram can select its next transition based upon this
value. Woods [16] and Singer [7] both provide more general mechanisms for achieving such a result
through the use of an external data structure, which actions may set and transition rules may examine.
The actions associated with the transitions in this specification are unusually comprehensive; they
comprise a complete specifications of the semantics of the MUMPS language.

Wasserman and Stinson [431 use a notation based upon that of the MUMPS specification [42] to
specify the user interface of a very simple interactive system. Their notation is easy to follow, although
the example they provide is too simple to provide a serious test of the notation. The example is strictly
deterministic (left imperative grammar), and they do not address whether they intend the technique to
handle the apparent nondeterminism discussed above. Their example also suggests (by omission) the
value of using nonterminals in state diagrams, since it would be improved by the addition of two non-
terminals with separate diagrams (specifically, in Fig. 8 of Ref 43, one for get-account-number and
another for get-amount). By contrast, if their example is translated into BNF one is virtually forced to
add the two (along with a number of other unhelpful nonterminals.

The use of the token ANY in their notation is also somewhat imprecise. Each transition rule
from a state gives a token that should appear in the input for this transition to occur. If none of those
tokens appears in the input, then the transition labeled ANY is made. In the resultant state, the input
is again examined to determine the next transition. It is not clear whether the same token (the one
that matched ANY) is examined again or whether the input stream is advanced to the next token. The
former interpretation is more conventional [26], results in a more versatile notation, and is the one that
is implied by the precise definition given in Ref. 42. Applying that interpretation to one of Wasserman
and Stinson's diagrams, however, yields an infinite loop, while applying the other interpretation to the
diagram results in the specification of an unusually poor user interface.

Another ambiguous detail in their notation is the specification of messages to the user. Messages
are associated with states rather than transitions. This makes it difficult to determine whether a mes-
sage occurs before or after the other actions associated with a state transition. It also requires their
example to contain two extra states, each with only one entry and one exit, whose sole purpose is to
hold messages. Associating messages with transitions between states, as are actions, would be clearer.

12



CZ
NRL REPORT 8948

Another problem is a confusion between syntax and semantics. One diagram (Fig. 8 of Ref. 43)
includes a transition for a syntactic error (three unrecognized inputs in a row) that can only be made as
a result of an action in the semantic domain (set and test a counter). Such a mechanism is necessary
for errors that are genuinely in the semantic domain (e.g., an unknown account number given in the
correct format for account numbers), but it is here applied to a syntactic error.

It is interesting to see how Reisner's criterion of structural simplicity [9] can be translated into the
terms of this notation. It would become: Given two nonterminals that are called with similar com-
mands from the same state (e.g., CREDIT and DEBIT), how similar are their individual diagrams?
The example in Wasserman and Stinson's paper does not give enough data to permit one to apply the
criterion to it, though.

Wasserman and Shewmake [44] describe an interpreter that accepts a specification in this form of
state transition diagram notation and then simulates the specified system. Semantic actions are given as
individual commands in the command language of the operating system.

Singer [7] presents a state diagram-based specification of a significant system (in contrast to much
other work in the field, which describes fairly trivial examples). The notation is more precise and more
general than most other versions of state diagrams, b ut it is more complex and difficult to follow. It
uses separate diagrams for nonterminals, and a global data structure, which is set by arbitrary semantic
actions. All transitions are selected by examining values in this data structure. While the two appear
quite different, most parts of Singer's notation could be mapped into that of the MUMPS specification
[42].

For simple cases, Singer's notation appears quite clumsy. One reason is that it introduces three
states to (1) read something (into the data structure), (2) print a message (the content of which may
depend on the value of the thing just read or on other data in the data structure), and (3) select the
next state (also based on predicates on the data structure). Thus, the following transition rules (taken
from the example in section 3):

getdr: DRAFTNAME - get-re
getdr: HELP - getdr act: reply ("Draft name can be...");
getdr: ANYTHINGELSE - get-dr act: reply ("Enter draft name");

would be written in Singer's notation as:

getdr: read-cmd - gotcmd
gotcmd: cmd=DRAFTNAME? - get-re
gotcmd: cmd=HELP? - was-help
gotcmd: cmd=ANYTHING ELSE? - waselse

was_help: print "Draft name can be ..." - getdr
waselse: print "Enter draft name" - get-dr

In fact, the general two-step procedure of "read-X; X=... ?" in Singer's notation is confusing. An
even worse problem arises when X is a complex command. Then the procedure can become "read-X;
parse-X; X-is-of ... type?' This has the effect that what should be several levels of syntactic and seman-
tic detail about the makeup of complex command. Then the procedure can become "read-X; parse-X;
X-is-of ... type?' This has the effect that what should be several levels of syntactic and semantic detail
about the makeup of complex command X in the specification are collapsed, because the details of the
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syntax of X are in semantic definitions of the action parse-X and the predicate X-is-of... type? One pos-
sible reason for preferring this two-step form of receiving user inputs to the more widely-used implicit
form (such as that of [431 or the example in Section 3) is that it could permit several parallel streams
of user input. A transition could call for receive-into-streaml, and another transition could later call for
receive-into-stream2. Then, either of the streams could be tested, using the appropriate semantic predi-
cate, in order to to select the next transition. It is not clear, however, what parallel input from a user
means. As long as he or she has a single input device (like a keyboard), all inputs are ultimately
sequential, even though the user may intend them to form several logical streams. Parallel input makes
sense when the user has several devices that he can operate simultaneously in real time (a joystick and
a pedal or a keyboard and an eye tracker). The price paid for Singer's more general notation may be
worthwhile for such system, but the systems he actually studies have only one input stream.

Singer emphasizes the distinctions between interactive behavior, syntax, and semantics and shows
how his notation permits the interactive behavior to be described separately from syntax and semantics.
The interactive behavior is defined by the states and transitions, and the syntax and semantics are
specified in the definitions of the actions and predicates on the data structure. Unfortunately, syntax
and semantics are not well separated in this notation. Moreover, Singer does not clearly distinguish
interactive behavior from syntax and semantics. For example, he gives no guidance that would militate
against an extraordinarily unenlightening specification in which interactive behavior is entirely described
by:

ready: receive-an-input-act-from-user-and-store-it-in-buffer - proc
proc: perform-processing-on-buffer-and-output-results-if-any - ready

while all other characteristics of the system (including syntax, semantics, and everything interesting
about its interactive behavior) are described in the definition of the semantic action perform-process-
ing-. ..

Singer's description for the interrupt mechanism in his system is theoretically interesting in that it
is self-contained-it is expressed in the same state transition diagram notation as the rest of the
system-but it is almost impossible to read. Such a specification is precise, but if it does not make the
behavior of the system easier to understand than does the program code itself, it is of questionable
value. The intuitive concept of his interrupt mechanism is fairly simple to explain, but the state
diagram notation for it, using a stack of saved environments and a scheduler to select among them, is
quite opaque. The result here is a user interface specification that makes the system more, not less,
difficult to understand.

One useful aspect of Singer's notation is that is contains a reasonable text representation for state
transition diagrams. His syntax for making calls on subdiagrams to recognize nonterminal symbols is
particularly convenient. His language for specifying semantic actions is less helpful. Semantic actions
manipulate a portion of a declared data structure, in a way rather like arbitrary computer program state-
ments might. The entire data structure is global in scope to all of the actions. Modularization and
scope rules for the semantic objects would help. Unfortunately, Singer's language for semantic actions
has no provision for these, so that it militates toward rediscovering the complexity and related software
engineering problems that arise when a large system consists of only one module (i.e., all data are glo-
bal).

Wasserman and Stinson's state diagram notation [43] can be converted into Singer's provided the
former does not contain any nondeterminism. Wasserman and Stinson's example is strictly determinis-
tic at every level, but specifications for most nontrivial languages would not be. In addition, Singer's
notation would yield an extra state (with an action) for each of the input operations that Wasserman
and Stinson imply by placing a token name on a transition arc. This means that Singer's diagram would
have many more states; but its notation is also more general, because it allows inputs without associated
actions as well as the converse.
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ZOG [45, 46, 47] is an outgrowth of PROMIS (Problem Oriented Medical Information System)
[48] provides a unified conception of a man-machine interface based on the notion of screens. It con-
sists of a fairly simple, menu-based system that is fundamentally similar to a state transition diagram.
Each screen or menu corresponds to a state, and. each of the menu options or other commands avail-
able in that state corresponds to a transition from the state. This approach may be too limited to for
specification of a general user interface, but its conceptual simplicity is appealing.

Finally, state diagram notations have also been found useful by a number of investigators for
describing and analyzing protocols for communication between machines, rather than between people
and machines [49,501.

4.3 Relationships between BNF and State Diagrams

The formal equivalence of BNF and various state transition diagram notations is well established
(e.g., [51]). Most state transition diagram notations discussed here introduce sub-diagram calls. The
ability of a diagram to make recursive subdiagram calls and the use of a genuinely nondeterministic
automaton has been shown to give the notation the power of a context-free grammar [52]. Adding
arbitrary actions and conditions (and the ability to create new variables dynamically) to either BNF or to
this state diagram notation makes either equivalent to a Turing machine.

Hence, the two classes of notations examined here are formally equivalent. A description in one
notation can be transformed algorithmically into a corresponding description in the other. However,
the two resulting specifications, while equivalent, are likely to differ considerably in their clarity to
human readers. The ability to transform one notation into another with an algorithm demonstrates
theoretical equivalence of the two types of notations, but the translations they produce do not provide
generally useful or readable specifications.

To clarify the relationship between BNF and state diagram notation, several such algorithmic
transformations between notations of these two types can be considered:

* BNF with Nonterminals into State Diagram with the Same Nonterminals

This can be done with a straightforward algorithm. Each instance of concatenation in a BNF rule
introduces an intermediate state in the state diagram translation. Each "or" in a BNF rule causes a fork
in the diagram.

* State Diagram with Nonterminals into BNF with the Same Nonterminals

This is less straightforward, but it too could be automated through the use of any technique for
enumerating paths through a graph. The method is to create a BNF rule for each diagram. The left-
hand side of the rule is the name of the diagram. Then, enumerate all paths from the initial to final
state of the diagram and list them, joined by "or" as the right hand side of the resulting BNF rule. An
additional complication arises when the graph contains loops; these would be translated into recursive
BNF rules.

* Either Notation with Terminal Only into the Other with Nonterminals

This requires rules to create nonterminals, and it cannot be done well by an algorithm. It is possi-
ble to specify a system using no nonterminals (except for those used recursively). It is also possible to
imagine an algorithm that creates a nonterminal for every group of terminals that appears more than
once in the specification. But neither of these techniques is likely to yield a particularly clear or helpful
specification of a user interface.
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* BNF with or Without Nontermina7s into State Diagram with Terminals only

This can be done with an algorithm and, in fact, has practical use. BNF driven parser-generators
operate by solving this problem and then simulating the resulting state machine [251. The result is not
a readable specification, because it contains the full (high-through low-level) description of the system
in a single unwiedly state diagram; but it is useful in that it can be executed by a simple interpreter.

Given a particular choice of nonterminals, then, it is possible to convert algorithmically between
state diagram and BNF specifications. The principal difference one finds is that a BNF-based specifica-
tion with very few nonterminals (relative to the complexity of the system) is generally more difficult to
understand than the corresponding state diagram. Conversely, a state diagram is generally easier to
understand when it has fewer nonterminals than a BNF description of the same system. For this rea-
son, the direct state diagram translation of a typical BNF specification is likely to contain many very
simple diagrams; while the BNF translation of a typical state diagram will generally contain only a few,
very complicated rules.

Thus an important difference between the two types of techniques is that BNF requires more non-
terminals to make it readable. BNF tends to be less readable than state diagrams when there are only a
few nonterminals, so it forces the writer to create more. This could be described as requiring the nam-
ing of otherwise irrelevant intermediate objects. State diagrams require the creation (and, for a text
representation, the naming) of intermediate states, the names of which are often not of interest. Text
representations of state diagram-based specifications tend to be longer than BNF-based specifications
since each new nonterminal adds two or more lines to the former and only one to the latter, but this is
a consequence of the particular text representations most widely used for the state diagrams. It is also
related to the fact that, while they are compact, the typical BNF-based techniques do not specify the
timing of actions conveniently. The choice of BNF- or state transition diagram-based notations is less
important in determining the clarity of a specification than the selection of the nonterminal symbols
used to describe a system. While the effects of making a particular choice of nonterminals are different
for the two types of specifications (i.e., BNF requires more nonterminals), choosing them is a crucial
step in constructing a specification-and it requires human understanding of the underlying system.

4.4 Other Specification Techniques

Nearly all of the work in specifying user interfaces has used a specification language based on
BNF or state transition diagrams. However, a few other techniques have been proposed.

Moran [531 provides a LISP-like notation for describing a user's knowledge about a computer sys-
tem at several levels, from an overall task analysis to individual key presses. This notation results in an
unusually long and detailed specification. At the "Interaction Level," Moran's specification can be
mapped onto a state transition diagram. His notation does not contain a state diagram representation of
the interaction level of the user interface, but it does record a number of properties such a diagram
would have. These properties are sufficient to generate a state diagram specification or (in cases where
only a few properties are specified) a set of diagrams.

Barron [541 attempts to use Petri nets to describe the user interface of a system, but the resulting
description appears unnecessarily complex.

The Human Operator Simulator [55] is an extensive software system for simulating human opera-
tor performance (hand movements, short-term memory recall, and the like). In doing this, the system
uses its own, rather detailed FORTRAN-like language for describing user interfaces. This language
tends to favor computer- rather than user-initiated dialogues, in that it specifies what the user must do
next, rather than the range of options available to him.
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Green [561 proposes a technique that closely resembles the specifications used to describe
software modules, but, because it describes the user's command language as a collection of disjointed
procedure calls, it fails to capture the overall surface structure of that language clearly.

5. INTRODUCTION TO SPECIFICATION EXAMPLES

The following section presents a collection of specifications and fragments of specifications of user
interfaces that is intended to apply several of the specification techniques discussed above to some
example systems. The purpose of studying these examples is to compare the relative merits of several
representative specification techniques by considering how well they can be applied to a common set of
problems. Several of these examples are specifications of subsets of systems or very small systems. In
these cases, just enough of the system is specified to shed some light on the specification techniques
themselves. In other cases, only certain techniques are applied to a particular example. This is done
where the omitted techniques provide no additional information, because they are very similar to some
included technique.

Several of the examples used in these specifications are taken from papers that propose a specifi-
cation method. In such cases, the reader is directed to the original paper to see that technique applied
to the example. Here, one or more other techniques are applied to the same example in case the origi-
nal example was contrived in a way that made it easy to describe using the technique proposed, but dif-
ficult with others. In such cases, applying a specification technique across a variety of examples, as
presented in the specifications below, where each example was originally constructed to suit a different
technique, will give a clearer picture of the merits of the technique.

The specification techniques used here fall into two classes: those based on BNF and those based
on state transition diagrams. The syntax for each of the techniques is described briefly below.

5.1 BNF

This is straightforward BNF notation. Lower case names denote nonterminal symbols, which are
subsequently defined in terms of terminal symbols. Upper case names are terminal symbols, which
would be defined in a lower-level specification. In some specifications, definition rules have been
annotated with Boolean conditions, replies, or actions, placed in braces. Where a condition is given, it
must be true at the point in the input stream corresponding to its position in the rule for the rule to be
matched. When a rule is matched, the system will display the reply and perform the action, if any are
given. The special token NULL represents no input; and the token RETURN denotes the carriage-
return key. A token or nonterminal name followed by an asterisk* stands for zero or more instances of
that symbol.

5.2 YACC Input Form

YACC is a compiler-compiler that accepts a BNF description of an input language plus actions and
generates an executable system directly from the specificationi. The specifications are essentially BNF,
but some additional syntactic conventions are used, some extra programming features are needed, and
actions are written in a real programming language (in this case C [571), rather than informally as in
the BNF above. In addition, to obtain an executable system, a lexical scanner for recognizing low-level
tokens must be provided. This is done using another, very simple specification language, which drives
a lexical analyzer-generator, LEX, just as BNF drives the compiler-generator. Each of the specifications
given in YACC input form has been tested by annotating its definitions with actions and constructing
and executing the system directly from the resultant specification using YACC. See [Ref. 21] for a
description of YACC and LEX, and [58] and [591 respectively, for the specific details of their input
syntaxes.
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5.3 Graphic State Transition Diagram

The notation for these diagrams follows fairly widely-used conventions. Each state is represented
by a circle. Each transition between two states is shown as a labeled, directed arc between two state cir-
cles. It is labeled with the name of an input token (or another diagram) and, in some cases, a Boolean
condition or an action. The transition will occur if the input token is received (or the other diagram is
traversed) and the condition is satisfied; when it does, the system will perform the action. This nota-
tion is most similar to Augmented Transition Networks [16] in the way diagrams can impose arbitrary
Boolean conditions, invoke actions and call other diagrams.

Note that all of the diagrams that appear here were generated directly from computer input con-
sisting of the text representation described below plus a small amount of additional positioning informa-
tion.

5.4 Text Representation of State Transition Diagram

This is a text form of the state transition diagram notation discussed above. Each diagram begins
with a header line that gives the name of the diagram and the name(s) of its exit state(s). A list of the
transitions that comprise the diagram follows, each represented by a line of the form:

Si: INP -s2 act: ThisAction;

denoting a transition from state sl to state s2 that expects input token INP and performs action
ThisAction. A condition would be specified in a way similar to the action. Instead of an input token
INP, the name of another diagram, in lower case, could be given, meaning that that diagram would be
transversed, and, upon exit from it a transition to state s2 would be made. An ampersand in place of
the first state, sl, means that this transition starts from the same state as the transition listed immedi-
ately above it.

No single method found in the literature for representing state transition diagrams has been
entirely satisfactory, hence the method used here is a modification and combination of several such
methods. Existing methods vary in their use of conditions, outputs, and actions. Also, the ability to
give diagram names in place of input tokens means that the resulting system may need to scan several
diagrams nondeterministically to determine which scan will actually be completed; existing methods
vary on this point. In this notation, the special token ANY is defined such that if no other transition
can be made, the transition labeled with ANY is made, and the current input token is scanned again
when the new state is reached.

While these text representations seem difficult to follow, they are sufficient to generate automati-
cally the graphic state transition diagrams mentioned above. They are also sufficient to drive a simula-
tor of a user interface, in much the same way much that a BNF specification drives the YACC simula-
tor.

5.5 Singer's Text Representation of State Transition Diagrams

Singer [571 uses a text state diagram notation that is considerably different from that of most
other investigators. In his syntax, lower case strings represent semantic actions and predicates, which
manipulate and test an external data structure. They are specified separately from the state diagram, in
a programming language-like notation. As a result, more information about the system is contained in
that auxiliary specification than is the case for any of the other techniques used here. Complete details
of his notation are given in [571.
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5.6 Comments

In all of the notations used here, comments are enclosed between /* and */

6. SPECIFICATION EXAMPLES

6.1 Parnas' Examples

Parnas [38] presents examples of portions of a user interface and proposes representing such by
state transition diagrams. His paper presents graphic state diagrams (the third technique discussed
above) for them. Two of his examples (his Figs. 1 and 3) are shown using each of the remaining four
techniques discussed above:

6.1.1 BNF

/*
* Parnas' Figure 1 in BNF
*
* Assumes that sl and s2 in the paper
* are to be considered the final states
* (i.e., you must reach one of them to exit
* successfully, but it doesn't natter which).
*/

cmd: := loadnews* logonl2

loadnews::=

logonl2::=

LOAD (reply: description of load)
NEWS (reply: news)

logon (reply: welcome #1)
logon2 (reply: welcome #2)

* Parnas' Figure 3 in BNF
*
* Assumes that s3 and s4 are to be considered the final states

cmd: := name of-program (reply: give parameter) illegal* legal

illegal::=

legal: : =

illegalvalue (reply: error)

legalvalue (reply: prompt 1)
legalvalue 2 (reply: prompt 2)

6.1.2 YACC Input

This specification is similar to that above, except that it is executable using YACC. YACC does
not provide a compact notation for zero or more instances of a symbol, so an extra rule is needed,
corresponding to each such construct in the previous specification.
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A simple lexical analyzer also had to be specified for each of the two examples. For the first
example, it simply returns the token name NEWS for the user input "NEWS," the token name LOAD
for user input "LOAD," and the tokens LOGi or LOG2 for user inputs corresponding to two types of
logon commands, "LOGON" and "LOGON2."

/*
* Parnas' Figure 1 as YACC input
*
* Assumes that s1 and s2 in the paper
* are to be considered the final states
* (i.e., you must reach one of them to exit
* successfully, but it doesn't matter which).
*/

%token LOAD NEWS LOG1 LOG2

cmd: loadnews logonl2

loadnews: singleloadnews | singleloadnews loadnews

singleloadnews
/* NULL */

| LOAD (reply(description of load)
| NEWS{reply(news))

logon 12
LOG1 {reply(welcome#1))

1 LOG2 {reply(welcome #2))

/*
* Parnas' Figure 3 as YACC input
*
* Assumes that s3 and s4 are to be considered the final states
*/

%token NAME ILLEGAL LEGAL1 LEGAL2

cmd: NAME {reply(give parameter) ) illegals legal

illegals: /* NULL */ | illegal 1 illegals illegal

illegal: ILLEGAL reply(error));

legal: LEGALl{reply(prompt1)1
It LEGAL2 (reply(prompt 2))
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6.1.3 Text State Diagram

* Parnas' Figures1 and 3 in Text State Diagram Notation
*/ - .1r

figurel -(sl,s2)

init: LOAD -init act:reply(description of load);
init: NEWS -init act:reply(news);
init: logon -sl act:reply(welcome #1);
init: logon2 -s2 act:reply(welcome #2);

figure3 -(s3,s4)

s1: name of program -s2 act: reply(give parameter);

s2: legalvalue-*s3 act:reply(prompt1);
s2: legalvalue_2-s4 act:reply(prompt 2);
s2: illegal value -s2 act:reply(error);

6.1.4 Singer State Diagram

/*
* Parnas' Figures 1 and 3 in Singer's Notation

FIGURE1 - (return)
I: read-something - (IA1)

IA: something-is-logon? - (IA1)
& something-is-logon2? - (IA2)
& something-is-news? - (IA3)
& something-is-load? - (IA4)

IAI: print-welcomel - (SI)

IA2: print-welcome2 - (S2)

IA3: display-news- (I)

IA4: print-description-of-load-i (I)

FIGURE3- (return) ::

S1: read-something- (SlA)

S1A: something-is-name-of-program? - (S1Al)

S1Al: print-giveparameter1 - (S2)
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S2: read-something - (S2A)

S2A: something-is-legal-value? - (S2A1)
& something-is-legal-value2? - (S2A2)
& something-is-illegal-value? - (S2A3)

S2A1: print-promptl - (S3)

S2A2: print-prompt2 - (S4)

S2A3: print-error - (S2)

6.2 Wasserman and Stinson's Example System

Wasserman and Stinson [431 present examples of a very simple banking system specified as a state
diagram (similar to the graphic state diagram notation discussed above) and also in a tabular form
(similar to the text state diagram discussed).

6.2.1 BNF

The top level of their banking system can be specified in BNF fairly straightforwardly.

/*
* Top Level of Wasserman and Stinson's Example in BNF
*/

pgm::= cmd cmd*

cmd::= "HELP"
"CR" credit
"DB" ACCTNO AMOUNT
"BAL"ACCTNO
"NEV'newacct
"CLOSE"ACCTNO
"QUIT"

credit::= ACCTNO AMOUNT

6.2.2 YACC

Several YACC specifications are presented here; they describe several variations of Wasserman
and Stinson's system. Each version uses the same, simple lexical scanner. It returns each alphabetic
character as a separate token; the tokens HELP and DELIM for two special characters; ACCTNO for
an integer; and AMOUNT for a real number.

First, Wasserman and Stinson's entire system (the top level plus the one lower-level command
they specify) is presented, including the actions, which are written in C and enclosed in braces.

/*
* Wasserman and Stinson's Example as YACC input
*/

%token ACCTNO AMOUNT HELP DELIM
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pgm
: cmd

I pgm cmd

cmd
:'c' r' credit

'd' 'b' ACCTNO AMOUNT{
bal [$3] -=$4;
printf("Account%dbalance is now %10.2f," $3,bal [$3]);

'b' a' '1' ACCTNO-
printf("Account %d current balance is %10.2f,"$4,bal[$4]);

} - ,. . .

'n e w' newacct-
printf ("new account");

'c' 'l' 'o' 's' 'e' ACCTNO.

bal[$6] = -9999;
printf (Account %d closed",$6);

'q' u' 'i' 't' I
printf ("Goodbye");
exit();

error
printf ("Illegal Command");

credit
scantodelim getacct getamt

bal[$2] +=$3;
printf("Account %d balance is now %10.2f", $2, bal [$21);

scantodelim: nondelims DELIM;

nondelims: /* NULL :1/ nondelim I nondelim nondelims;

nondelim: alphchar HELP ACCTNO 1 AMOUNT;

getacct: helpjunkl ACCTNO $$ = $2;};

helpjunkl; singlehjl I singlehjl helpjunkl 1 /* NULL */;

singlehjl
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HELP (
printf ("CRED1: ACCOUNT NUMBER");
printf ("HLP2: ACCOUNT NUMBER IS 7 DIGITS");

scanhjl (
if (errcount>=3) printf ("FAIL I"); else errcount+=1;
printf("CRED1: ACCOUNT NUMBER");

;

scanhjl: nonhj1sDELIM;

nonhjls: nonhj1 nonhjl nonhjls;

nonhjl: alphchar I AMOUNT;

getamt: helpjunk2 AMOUNT ( $$ = $2;);

helpjunk2: singlehj2 | singlehj2 helpjunk2 I /* NULL*/;

singlehj2
HELP I

printf("CRED2: AMOUNT");
printf ("HLP3: AMOUNT IN DOLLARS & CENTS");

scanhj2
if (errcount>=3) printf ("FAIL roman"""); else errcount+=1;
printf ("CRED2: AMOUNT");

;

scanhj2: nonhj2s DELIM;

nonhj2s: nonhj2 nonhj2 nonhj2s;

nonhj2: alphchar I ACCTNO;

alphchar:
n'I' o''b' p q r ''I's''f' t'i' u 'i'v'' w'' x'I' y'l' ''m

newacct: /*NULL*/ ;

Because Wasserman and Stinson's example system is so simple, it does not provide a serious test
of the specification technique. Thus two modifications of their system, which provide some of the
features that would be found in a realistic system, are specified here. For simplicity, these versions do
not include the lower-level help features for the credit command that were shown in the specification
above. In the first version, a user can type a help key at any point (between two lexical tokens) in the
input, and the system will reply with a help message appropriate to the context of the current com-
mand. This specification is of interest because this sort of help facility is often cumbersome to describe
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in BNF (as seen in this example). It requires an extra nonterminal symbol help to be specified at every
position at which a user could ask for help. Each of these help nonterminals then has, as one of its
definitions, a null input, since the help request is optional.

/*
* Wasserman and Stinson's Example
* plus help facility
* as YACC input
*/

%token ACCTNO AMOUNT HELP DELIM
pgm

: cmd
I pgm cmd

cmd
: helpl

'c' 'r' help2 credit

'd' 'b' help3 ACCTNO help4 AMOUNT I
bal [$4]-=$6;
printf("Account%dbalance is now %10.2f",$4,bal [$4]);

'b' 'a' '1' help5 ACCTNO
printf("Account %d current balance is %10.2f",$5,bal [$51);

'n' 'e' 'w' help6 newacct
printf ("new account");

'c' 'l' 'o' 's' 'e' help7 ACCTNO I
bal [$7] = -9999;
printf ("Account %d closed",$7);

'q' 'u' 'i' 't' I
printf ("Goodbye");
exit();

error I
printf ("Illegal Command");

credit
: ACCTNO help8 AMOUNT (

bal [$1]+=$3;
printf ("Account %d balance is now %10.2f",$1 ,bal [$1]);
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newacct: /*NULL*/ ;

helpl: helpkey Iprintf ("legal commands are...");} | /*NULL*/;

help2: helpkey tprintf("credit command next--acctno") 1 /*NULL*/;

help3: helpkey (printf("account number for debit");) /*NULL*/;

help4: helpkey printf("amount for debit");} | /*NULL*/;

help5: helpkey tprintf ("account number for balance");} /*NULL*/;

help6: helpkey (printf ("new account command"):) I /*NULL*/;

help7: helpkey (printf("acct you want closed");} I /*NULL*/;

help8: helpkey tprintf ("amount for credit");) I /*NULL*/;

helpkey: HELP;

Another modification of their system is shown. Here, the names and arguments of the com-
mands can be entered in any arbitrary order. This is a desirable capability for many practical systems; it
is possible when the types of inputs can all be distinguished lexically (rather than at a higher level).
However, without extending the syntax of a BNF- or state diagram-based notation, it is cumbersome to
specify, because it requires enumerating all possible permutations of the input tokens. The example
here shows how this would be done in BNF notation for YACC.

/*
* Wasserman and Stinson's Example
* plus ability to accept commands and arguments in any order
* as YACC input
*/

%token ACCTNO AMOUNT HELP DELIM

pgm
cmd

I pgm cmd

cmd
'c' 'r' credit

debit

balance

'n' 'e' 'w' newacct(
printf ("new account"),
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close

'q' 'u' i t 

printf ("Goodbye");
exit();

error:
printf ("Illegal Command");

credit
ACCTNO AMOUNT

bal [$1]+=$2;
printf("Account%dbalance is now%10.2f",$1,bal [$1]);

}

AMOUNT ACCTNO
bal [$2]+=$1;
printf("Account %d balance is now%10.2f",$2,bal [$2]);

debit
'd' 'b' ACCTNO AMOUNT I

bal [$3]=-$4;
printf("Account%dbalance is now %10.2f",$3,bal [$31);

}

'd 'b' AMOUNT ACCTNO
bal [$4]-=$3;
printf("Account %d balance is now %10.2f",$4,bal [$4]);

AMOUNT ACCTNO 'd' 'b'
bal [$2]-=$1;
printf("Account %d balance is now %10.2f",$2,bal [$2]);

ACCTNO AMOUNT 'd' 'b' I
bal [$1]-=$2;
printf("Account %d balance is now %10.2f",$1 ,bal [$11);

AMOUNT 'd' 'b' ACCTNO {
bal [$4]-=$1;
printf("Account %d balance is now %10.2f",$4,bal [$4]);

ACCTNO 'd' 'b' AMOUNT I
bal [$1]-=$4;
printf("Account %d balance is now %10.2f",$1,bal [$1);
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balance
'b' 'a' '1' ACCTNO

printf ("Account %d current balance is %10.2f",$4,bal [$4]);

ACCTNO 'b' 'a' 'V
printf("Account%d current balance is %10.2f",$1,bal [$1]);

close
'C' '1' 'o' 's' 'e' ACCTNO I

bal [$6] = -9999;
printf ("Account %d closed",$6);

l

I ACCTNO 'c' 'l' 'o' 's' 'e' I
bal L$1] = -9999;
printf ("Account %d closed",$1);

;

newacct: /* NULL */

6.2.3 Singer State Diagram

Again, the top level of the banking system is specified first, in a relatively straightforward
manner.

/*
* Top Level of Wasserman and Stinson's Example
* in Singer's Notation
*
* In each state the additional rule:
* anything-else - (errorstate)
* is intended.
*/

MAIN - (return)
init: PROCESS-CMD - (return)

PROCESS-CMD - (ret) ::

init: read-a-token - (S)

S: token-is-cr? - (credit)
& token-is-db? - (debit)
& token-is-bal? - (balance)
& token-is-new? - (newacct)

credit: CREDIT-CMD - (ret)
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debit: DEBIT-CMD - (ret)

balance: BALANCE-CMD - (ret)

newacct: NEWACCT-CMD - (ret)

Next, one of the modifications to Wasserman and Stinson's example previously discussed is speci-
fied. This is the version in which the names and arguments of the commands can be entered in arbi-
trary orders. There are two ways to specify this system in Singer's notation. The first one relegates all
of the detail about how commands are entered into the definitions (not given here) of the semantic
domain predicates of the form command-type-is-....

/*
* Wasserman and Stinson's Example
* plus ability to accept commands and arguments in any order
* in Singer's Notation
*/

MAIN - (return)

init: get-command- (1)

1: parse-command- (2)

2: command-type-is-debit? - (debit)
& command-type-is-credit? - (credit)
& command-type-is-balance? '- (balance)
& command-type-is-newacct? - (newacct)

debit: do-debit-actions - (init)
credit: do-credit-actions - (init)

balance: do-balance-actions - (init)

newacct: do-newacct-actions - (init)

The second way to specify this modification of Wasserman and Stinson's example in this notation
is to extend Singer's formalism to permit nondeterminism, in a way analogous to that used by the other
state diagram notations presented here.

/*
* Wasserman and Stinson's Example
* plus ability to accept commands and arguments in any order
* in a modification of Singer's Notation that permits
* non-determinism
*
* Also, this specification includes the counterpart of the
* BNF rule, pgm::= (one-or-more)cmd
*
* In each state the additional rule:
* anything-else - (errorstate)

29



ROBERT J.K. JACOB

* is intended.
*/

MAIN - (ok)

init: PROCESS-CMD - (ok)
ok: PROCESS-CMD - (ok)

PROCESS-CMD (ret)
init: CREDIT- (ret) /*

DEBIT- (ret) * note that this is a
BALANCE - (ret) * nondeterministic rule
NEWACCT- (ret) * for state init
CLOSE (ret) */

CREDIT - (ret)
init: read-a-token-p (S)

S: token-is-acctno? - 1

& token-is-amount? - (2)

1: read-a-token- (A)
A: token-is-amount? - (proc)

2: read-a-token- (B)

B: token-is-acctno? (proc)

proc: do-credit-actions (ret)
DEBIT (ret) ::
init: read-a-token - (S)

S: token-is-acctno? - (1)
& token-is-amount? - (2)
& token-is-db? (3)

1: read-a-token (A)
A: token-is-amount? - (4)

& token-is-db? - (5)

2: read-a-token- (B)

B: token-is-acctno? - (6)
& token-is-db? - (7)

3: read-a-token - (C)

C: token-is-acctno?- (8)
& token-is-amount? - (9)

4: read-a-token- (D)
D: token-is-db?- (proc)

5: read-a-token- (E)
E: token-is-amount? - (proc)
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6: read-a-token - (F)
F: token-is-db? - (proc)

7: read-a-token - (G)

G.: token-is-acctno? - (proc)

8: read-a-token - (H)
H: token-is-amount? - (proc)

9: read-a-token-- (I)
I: token-is-acctno? - (proc)

proc: do-debit-actions - (ret)

BALANCE - (ret)
init: read-a-token - (S)

S: token-is-acctno? - (1)

& token-is-bal? - (2)

1: read-a-token - (A)
A: token-is-bal? - (proc)

2: read-a-token - (B)
B: token-is-acctno?- (proc)

proc: do-balance-actions - (ret)

6.3 Reisner's System

Reisner [91 represents the user interface to a simple, but real system in BNF. This is in contrast
with the artificial (and nearly trivial) example systems given above. Her paper presents a complete
specification of one interactive graphics system in BNF, except that the system's actions and replies are
not specified. The specifications below attempt to represent the same system using state diagrams.
This example is rich enough to reveal that there are several ways to transform a BNF specification into
a state diagram, and some of these possibilities are shown.

6.3.1 Straightforward Translation from BNF to State Diagram

This first version is simply a one-to-one mapping from BNF. The result is more cumbersome
than BNF and not much more illuminating, except possibly that the state diagram notation emphasizes
exactly what the user can do at each point in a dialogue, while that information is only implicit in BNF.

/*
* Reisner's Example in Text State Diagram Notation
* Version O-Subset of the original system only
*/

picture - return
init: coloredshape - ok
ok: coloredshape - ok
& ANY - return
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coloredshape
init:
&

color - ret
init:
&
&

newcolor - ret
init: CU

& CU

& CU

old__color - ret
init: AS

- ret
color - s
shape - c
shape - ret
color - ret

newcolor - ret
oldcolor - ret
startingdefaultcolor - ret

IRSORINRED - ret
IRSORINBLUE - ret
IRSORINGREEN - ret

NY - ret

starting_defaultcolor - ret
init: ANY - ret

shape - ret
init:
&
&

discreteshape - ret
continuousshape - ret
textshape - ret

discrete-shape - ret
init: separate d shape - ret
& connected-d shape - ret

separate_d-shape - ret
init: select_separate d shape - sa
sa: describe_separate_d_shape - ret

6.3.2 BNF to State Diagram, with Some Nonterminals Removed

This version still retains the same basic organization as Reisner's original BNF specification, but it

removes some of the nonterminals that were necessary in BNF, but are not necessary in state diagram
notation.

/*
* Reisner's Examples in Text State Diagram Notation
* Version 1
*
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* Note: State numbers below correspond to the number of
* Reisner's rule that contains the + that required this
* extra state.
*/

picture - return
init: co.
ok: co]
& AN)

Loredshape - ok
Loredshape - ok
r- return

coloredshape - ret
init: color - s
& shape - c
s : shape - ret
c : color - ret

color - ret
/*
* Note: This nonterminal looks as though it should also have
* been collapsed in the original BNF to
* color::= CURSORINRED I CURSORINBLUE I CURSORINGREEN NULL
*/ 1

CURSORINRED - ret
CURSORINBLUE - ret
CURSORINGREEN - ret
ANY - ret

shape -' ret
init:
&
&
&
&
&
&
&
&

s 9:
&
&
&
&

s13:
s34:
s33:

selectold__dshape /*actually = NOTHING*/ - s9
selectline - s13
selectbox - s13
selectcircle - s13
selecthorizontal - s9
selectvertical - s9
selectoldc_shape /*actually = NOTHING*/ - s68
select_c_switch - s71
describetext shape - ret

CURSORATLINE_POINT_1 - s34
CURSOR_ATCIRCLECENTER - s34
CURSOR ATBOXCORNER - s34
CURSOR__AT__H_LINEPOINT_1 - s47
CURSORAT_V_LINEPOINT_1 - s47

GO_1 - s9
STARTGO_2 - s33
CURSORATLINEPOINT_2 - s39
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& CURSORATCIRCUMFERENCE - s39
& CURSORATDIAGONALCORNER - s39
s39: ENDGO 2 -s55
s47: STARTGO_2 - s46
s46: CURSOR_AT_H_LINEENDPOINTON_Y_AXIS - s39
& CURSORAT_V_LINEENDPOINTON_X_AXIS - s39

s55: CURSORATLINEPOINT_2 - s39x
& CURSORATCIRCUMFERENCE - s39x
& CURSORATDIAGONALCORNER - s39x
& selecthorizontal - s63
& selectvertical - s63
& ANY - ret
s39x: END GO_2 - s55
s63: CURSORAT_H_LINEENDPOINTON_Y_AXIS - s39x
& CURSOR_AT_V_LINEENDPOINTON_X_AXIS - s39x

s71: GO_1 - s68
s68: setknob - s73a
s73a: ROTATEKNOBFULLCOUNTERCLOCKWISE - s83a
s83a: POSITIONCURSOR - s83b
s83b: ROTATEKNOBFULLCLOCKWISE - s73b
& ROTATEKNOBPARTIALCLOCKWISE - s73b

s73b: ROTATEKNOBFULLCLOCKWISE - s85
& ROTATEKNOBPARTIALCLOCKWISE - s85
& ROTATEKNOBPARTIALCOUNTERCLOCKWISE - s85
& ANY - s85

s85: MOVE_CURSOR - s73c
& ANY - s73c

s73c: ROTATEKNOBFULL_COUNTERCLOCKWISE -ret

select line -ret
init: BOXSWITCHDOWN - s17
& CONTINUOUSSWITCHDOWN - s17
& HORIZSWITCHDOWN - s17
& VERTSWITCHDOWN - s17
s17: LINESWITCHUP - ret

selectbox -ret
init: LINESWITCHDOWN - s20
& CONTINUOUSSWITCHDOWN -s20
& HORIZSWITCHDOWN - s20
& VERTSWITCHDOWN - s20
s20: BOXSWITCHUP - ret

selectcircle - ret
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init: CONTINUOUSSWITCHDOWN -s23
& VERTSWITCHDOWN-' s23
& HORIZSWITCHDOWN - s23
s23: LINESWITCHUP - s25a
& BOXSWITCHUP - s25b
s25a: BOXSWITCHUP - ret
s25b: LINESWITCHUP - ret

select horizontal - ret
init: LINESWITCHDOWN s26
& BOXSWITCHDOWN - s26
& VERTSWITCHDOWN - s26
& CONTINUOUS SWITCH DOWN -s26
s26: HORIZSWITCHUP - ret

selectvertical - ret
init: LINESWITCHDOWN- s29
& BOXSWITCHDOWN - s29
& HORIZSWITCHDOWN - s29
& CONTINUOUS_SWITCHDOWN- s29
s29: VERTSWITCHUP - ret

select_c_switch - ret
init: CONTINUOUSSWITCHUP - s72a
& select-line - s72b
& selectbox - s72b
& selectcircle - s72b
s72a: selectline - ret
& selectbox - ret
& selectcircle - ret
s72b: CONTINUOUSSWITCH_UP - ret

setknob - ret
init: WIDTHANGLESWITCHDOWN - s75a
& WIDTHANGLESWITCHUP - s76a

s75a: ROTATEKNOBFULLCLOCKWISE - s75b
& ROTATEKNOBPARTIALCLOCKWISE - s75b
s75b: WIDTHANGLESWITCH_UP - ret

s76a: ROTATEKNOBFULLCLOCKWISE - s76b
& ROTATEKNOB_PARTIALCLOCKWISE - s76b
s76b: WIDTHANGLESWITCHDOWN - ret

describe text shape - ret
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init: ADDITIVEBLOCKEDSWITCHUP - s9la
& ADDITIVEBLOCKEDSWITCHDOWN - s91a
& SINGLEDOUBLESWITCH_UP- s9lb
& SINGLEDOUBLESWITCHDOWN- -s91b

s9la: SINGLE DOUBLE SWITCH UP - s91c
& SINGLEDOUBLESWITCHDOWN - s9lc
s9lb: ADDITIVEBLOCKEDSWITCH_UP - s9lc
& ADDITIVEBLOCKEDSWITCHDOWN - s91cc
s91c: POSITIONCURSOR- s95

s95: STARTGO_2 - s94
s94: SYMBOL - s94
& TYPINGCONTROL_OPERATION - s94
& ANY - ret

6.3.3 BNF to State Diagram, Completely Reorganized

Finally, the following specification represents a complete revision of the BNF specification, using
a different overall organization. Rewriting the specification as a state diagram from the start results in a
much clearer specification than the previous two versions. Thus the previous versions really constitute
state diagram notation superimposed on a BNF-based organization. While the two notations are for-
mally equivalent, each works best when the nonterminal symbols used are chosen with a view toward
the particular notation. An additional benefit of this version is that it handles the few dependencies
that Reisner could not express in BNF, but had to describe in footnotes.

/*
*Reisner's Example in Text State Diagram Notation
*Version 2
*/

picture - return
init: coloredshape - ok
ok: coloredshape - ok
& ANY - return

colored shape - ret
init: color - s
& shape - c
s: shape - ret
c : color - ret

color - ret
init: CURSORINRED-'ret
& CURSOR_INBLUE - ret
& CURSORINGREEN - ret
& ANY - ret
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shape - ret
init:
&
&
&
&

&

I :
&

b:

&

hv:
&
&

linel - ret
init:
&
sl 3:
s9:
s34:
s33:
s39:

linel - 1
box1 - b
circle1 - c
horiz1 - hv
vert1 - hv
continuous - ret
text - ret
line2 - 1
ANY - ret

box2 - b
ANY - ret

circle2 - c
ANY - ret

horiz2 - hv
vert2 - hv
ANY - ret

selectline - s13 act: prev:=line;
ANY cond: prev=line; - s9
GO_1 - s9
CURSORATLINEPOINT_1 - s34
STARTGO_2 - s33
CURSORATLINEPOINT_2 - s39
ENDGO_2 2 ret

box1 - ret
init:
&
s13:
s9:
s34:
s33:
s39:

circle1 - ret
init:
&
s13:
s9:
s34:
s33:
s39:

selectbox - s13 act: prev:=box;
ANY cond: prev=box; - s9
GO_1 - s9
CURSORATBOXCORNER - s34
STARTGO_2 - s33
CURSORATDIAGONALCORNER- s39
ENDGO_2 2 ret

selectcircle - s13 act: prev:=circle;
ANY cond: prev=circle; -'s9
GO_1 - s9
CURSORATCIRCLECENTER -s34
START_GO_2 - s33
CURSORATCIRCUMFERENCE - s39
ENDGO_2 - ret
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horiz1 - ret
init: selecthoriz - s9 act: prev:=horiz;
& ANY cond: prev=horiz; - s9
s9: CURSORAT_H_LINEENDPOINTON_Y_AXIS - s34
s34: STARTGO_2 - s33
s33: CURSOR_AT_H_LINEENDPOINTON_Y_AXIS - s39
s39: ENDGO_2 - ret

vert1 - ret
init: selectvert - s9 act: prev:=vert;
& ANY cond: prev=vert; - s9
s9: CURSOR_AT_V_LINEENDPOINTON_X_AXIS - s34
s34: STARTGO_2 - s 33
s33: CURSORAT_V_LINEENDPOINTON_X_AXIS - s39
s39: ENDGO_2 - ret

line2 - ret
init: CURSORATLINEPOINT_2 - s39x
s39x: ENDGO_2 - ret

box2 - ret
init: CURSORATDIAGONALCORNER - s39x
s39x: ENDGO_2 - ret

:circle2 - ret
init: CURSORATCIRCUMFERENCE-' s39x
s39x: ENDGO_2 -ret

horiz2 - ret
init: selecthorizontal - s63
s63: CURSORAT_H_LINEENDPOINTON_Y_AXIS s39x
s39x ENDGO_2 - ret

vert2 - ret
init: selectvertical - s63
s63: CURSORAT_V_LINEENDPOINTON_X_AXIS -s39x
s39x: ENDGO_2 - ret

selectline -ret
init: BOXSWITCHDOWN - s17
& CONTINUOUS._SWITCHDOWN - s17
& HORIZ_SWITCH_DOWN - s17
& VERTSWITCH_DOWN - s17
s17: LINESWITCH_UP - ret
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selectbox - ret
init: LINESWITCHDOWN - s20
& CONTINUOUSSWITCHDOWN - s20
& HORIZSWITCHDOWN- s20
& VERTSWITCHDOWN - s20
s20: BOXSWITCHUP - ret

select-circle _ ret
init: CONTINUOUSSWITCHDOWN s23
& VERTSWITCHDOWN - s23
& HORIZSWITCHDOWN- s23
s23: LINESWITCHUP - s25a
& BOXSWITCHUP - s25b
s25a: BOXSWITCHUP - ret
s25b: LINESWITCH_UP - ret

select-horizontal - ret
init: LINE SWITCH DOWN - s26

BOXSWITCHDOWN - s26
VERTSWITCHDOWN - s26
CONTINUOUSSWITCHDOWN - s26
HORIZSWITCHUP - ret

selectvertical - ret
init: LINESWITCHDOWN - s29
& BOXSWITCHDOWN - s29
& HORIZSWITCHDOWN-' s29
& CONTINUOUSSWITCHDOWN - s29
s29: VERTSWITCHUP - ret

continuous - ret
init: select_c_switch - s71
& ANY - s68
s71: GO_1 - s68
s68: setknob - s73a
s73a: ROTATEKNOBFULLCOUNTERCLOCKWISE - s83a

POSITIONCURSOR - s83b
ROTATEKNOBFULLCLOCKWISE - s73b
ROTATEKNOBPARTIALCLOCKWISE - s73b

ROTATEKNOBFULLCLOCKWISE - s85
ROTATEKNOBPARTIALCLOCKWISE - s85
ROTATEKNOBPARTIALCOUNTERCLOCKWISE - s85
ANY- s85

MOVECURSOR - s73c
ANY- s73c
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s73c: ROTATEKNOBFULLCOUNTERCLOCKWISE ret

select_c_switch - ret
init: CONTINUOUSSWITCHUP - s72a
& selectline - s72b
& selectbox - s72b
& selectcircle - s72b
s72a: selectline - ret
& selectbox - ret
& selectcircle -ret
s72b: CONTINUOUSSWITCHUP - ret

setknob -ret
init: WIDTHANGLESWITCHDOWN - s75a
& WIDTHANGLESWITCHUP - s76a

s75a: ROTATEKNOBFULLCLOCKWISE -s75b
& ROTATE_ KNOB PARTIALCLOCKWISE - s75b
s75b: WIDTHANGLESWITCHUP - ret

s76a: ROTATEKNOBFULLCLOCKWISE - s76b
& ROTATEKNOBPARTIALCLOCKWISE - s76b
s76b: WIDTHANGLESWITCHDOWN - ret

text - ret
init: ADDITIVEBLOCKEDSWITCH_UP - s9la
& ADDITIVEBLOCKEDSWITCHDOWN - s91a
& SINGLEDOUBLESWITCH _UP - s9l1 b
& SINGLEDOUBLESWITCHDOWN - s9lb

s9la: SINGLEDOUBLE_SWITCHUP - s9lc
& SINGLEDOUBLESWITCHDOWN - s91c
s9lb: ADDITIVEBLOCKED_SWITCHUP - s9lc
& ADDITIVEBLOCKEDSWITCHDOWN - s9l1 c
s91c: POSITIONCURSOR - s95
s95: STARTGO_2 - s94

s94: SYMBOL - s94
& TYPINGCONTROLOPERATION - s94
& ANY - ret

6.4 Example Military Message System Commands

Two example commands suitable for a simple Military Message System are specified here.

The login command prompts the user to enter his or her name. If the system does not recognize
that name, it asks the user to reenter it, until he enters a valid name. Then, the system requests a
password; if the password entered is incorrect, the user gets one more try to enter a correct one and
proceed; otherwise he must begin the whole command again. Next, the system requests a security level

40



NRL REPORT 8948

for the session, which must be no higher than the user's security clearance. If he enters a level that is
too high, he is prompted to reenter it, until he enters an appropriate level. If he does not enter an
appropriate security level, he is given the default level Unclassified.

The reply command permits a user to send a reply to a message he has received. The user can
give an optional input indicating to which message he wants to reply;, otherwise, the default is
CurrentMsg. He then enters the text of his reply. Following this, he can enter some optional lists
containing additional addressees to whom he wants this reply to be sent (in addition to those on the
distribution list of the message to which he is replying). Each of these lists consists of the word To or
Cc (depending on how the reply should be addressed to these people) followed by one or more addres-
sees.

The actions invoked by these commands are expressed compactly and conveniently in terms of
the MMS Intermediate Command Language [18]. It provides a high-level model of the functions that a
message system can perform and a notation for describing them that is well suited to use in the action
portion of this type of specification.

6.4.1 BNF

/*
*Example MMS Login command
*/

login::= badpw* goodpw (reply: "Enter security level") getseclevel

badpw::= loguser onetry PASSWORD
{cond: vPASSWORD=rGETPASSWDUSER (vUSER)
reply: "Incorrect password--start again")

goodpw::= loguser PASSWORD (cond: vPASSWORD=GETPASSWDUSER (vUSER)

i loguser onetry PASSWORD (cond: vPASSWORD=GETPASSWDUSER (vUSER) I

loguser::= LOGIN (reply: "Enter name") getuser (reply: "Enter password")

getuser::= baduser* USER(cond: EXISTS_USER (vUSER)

baduser::= USER 1cond: not EXISTS USER (vUSER)
reply: "Incorrect user name--reenter it")

onetry::= PASSWORD (cond: vPASSWORD=GETPASSWDUSER (vUSER)
reply: "Incorrect password--reenter it")

get3eclevel::= badsl* (reply: "Your security level is Unclassified"
act: CREATESESSION (vUSER, vPASSWORD, Unclassified)}

badsl* SECLEVEL (cond: vSECLEVEL<=GETCLEARANCEUSER (vUSER)
act: CREATESESSION (vUSER, vPASSWORD, vSECLEVEL)

badsl::= SECLEVEL (cond: vSECLEVEL>GETCLEARANCEUSER (vUSER)
reply: "Security level too high--reenter it")
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/*
*Example MMS Reply command
*/

reply::=

getid::=
II

extras::=

extratos::=

toaddressee::=

extraccs::=

ccaddressee::=

REPLY getid (reply: "Enter text field"
act: replybuf:=OPENFOREDIT MSG(replyid)l
TEXT tact: SETTEXTMSG(vTEXT, replybuf)l
extras* tact: UPDATEMSG(replyid, replybuf),
CLOSEEDITMSG (replyid) 

MSGID (act: replyid:=REPLYMSG(vMSGID)

NULL tact: replyid:=REPLYMSG(CurrentMsg)l

extratos iextraccs

TO toaddressee toaddressee*

ADDRESSEE tact: SETTOMSG (replybuf,
GETTOMSG (replybuf)+vADDRESSEE)

CC ccaddressee ccaddressee*

ADDRESSEE (act: SETCCMSG (replybuf,
GETCCMSG (replybuf)+vADDRESSEE)

6.4.2 Graphic State Diagram

Figure 3 shows the login and reply commands in state diagram notation.

6.4.3 Text State Diagram

/*
*Example MMS Login command
*/

login - end

start:

getu:

getpw:

badpw:

LOGIN - getu act: reply ("Enter name");

USER cond:not EXISTSUSER (vUSER); - getu
act: reply ("Incorrect user name--reenter it");

USER cond: EXISTS__USER (vUSER); -getpw
act: reply ("Enter password");

PASSWORD cond: vPASSWORD=GETPASSWDUSER (vUSER); - getsl
act: reply ("Enter security level");

PASSWORD cond: vPASSWORD•GETPASSWD_USER (vUSER); - badpw
act: reply ("Incorrect password--reenter it");

PASSWORD cond: vPASSWORD=GETPASSWDUSER (vUSER); - getsl
act: reply ("Enter security level");
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PASSWORD cond: vPASSWORD•GETPASSWDUSER (vUSER); - start
act: reply ("Incorrect password--start again");

SECLEVEL cond: vSECLEVEL>GETCLEARANCE__USER (vUSER);
-getsl act: reply ("Security level too high--reenter it");

SECLEVEL cond: vSECLEVEL<=GETCLEARANCEUSER (vUSER);
-end act: CREATESESSION (vUSER, vPASSWORD, vSECLEVEL);

ANY - end act: (reply ("Your security level is Unclassified");
CREATESESSION (vUSER, vPASSWORD, Unclassified) );

reply - end
start:
getid:

gettext:
getextras:

extratos -
start:
t1:

extraccs -

start:
ci:

c2:

REPLY - getid

MSGID - gettext act: (reply ("Enter text field");
replyid=REPLY_MSG(vMSGID);
replybuf:=OPENFOREDITMSG(replyid)};

ANY - gettext act: (reply ("Enter text field");
replyid=REPLYMSG(CurrentMsg);
replybuf: =OPENFOREDITMSG (replyid));

TEXT - getextras act: SETTEXTMSG (vTEXT, replybuf);
extratos - getextras

extraccs - getextras
ANY - end act: (UPDATEMSG(replyid, replybuf);
CLOSEEDITMSG(replyid));

end

TO - t1

ADDRESSEE - t2
act: SETTOMSG(replybuf, GETTOMSG(replybuf)+vADDRESSEE);

ANY - end

end

CC - ci

ADDRESSEE - c2
act: SETCC_MSG(replybuf, GETCCMSG(replybuf)+vADDRESSEE);

ADDRESSEE - c2
act: SETCCMSG (replybuf, GETCCMSG(replybuf)+vADDRESSEE);

ANY - end
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login

USER kA3 SE LyLC14 A15

'I lUE 4A PASSWOD C8 9 

\ \ ~~~~~~~~~~~~~PAS;WR C10 All

(1) Act: reply("Enter name")

(2) Cond: not EXISTSUSER(vUSER)

(3) Act: reply("Incorrect user name--reenter it")

(4) Cond: EXISTS-USER(vUSER)

(5) Act: reply("Enter password")

(6) Cond: vPASSWORD=GETPASSWDUSER(vUSER)

(7) Act: reply("Enter security level")

(8) Cond: vPASSWORD54GETPASSWDJUSER(vUSER)

(9) Act: reply("Incorrect password--reenter it")

(10) Cond: vPASSWORD=GETPASSWD_USER(vUSER)

(11) Act: reply("Enter security level")

(12) Cond: vPASSWORD#GETPASSWDJUSER(vUSER)

(13) Act: reply("Incorrect password--start again")

(14) Cond: vSECLEVEL>GETCLEARANCEUSER(vUSER)

(15) Act: reply("Security level too high--reenter it")

(16) Cond: vSECLEVEL<=GETCLEARANCEUSER(vUSER)

(17) Act: CREATESESSION(vUSER,vPASSWORD,vSECLEVEL)
(18) Act: { reply("Your security level is Unclassified");

CREATESESSION(vUSER,vPASSWORD,Unclassified)}

Fig. 3 - State diagram representation of example MMS commands
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reply

TX A3 A

(1) Act: { reply("Enter text field"); replyid:=REPLY-vSG(vMSGlD);
replybuf:=OPENFOREDITJVSG(replyid)}

(2) Act: { reply("Enter text field"); replyid:=REPLYMSG(CurrentMsg);
replybuf:=OPENFOREDIT.MSG(replyid)}

(3) Act: SETTEXT-vSG(vTEXT,replybuf)

(4) Act: { UPDATE2VSG(replyid,replybuf); CLOSEEDITvSG(replyid)}

extratos

ADDRpiAEAE A2

(1) Act: SETTO-MSG(replybuf,GETTO-MSG(replybuf)+vADDRESSEE)
(2) Act: SETTO-vSG(replybuf,GETTO-MSG(replybuf)+vADDRESSEE)

extracos

ADDRE E A2

p cc <( -ADDRESSEE Al

(1) Act: SETCCGJSG(replybuf,GETCCGJSG(replybuf)+vADDRESSEE)
(2) Act: SETCCMSG(replybuf,GETCCGMSG(replybuf)+vADDRESSEE)

Fig. 3 (Continued) - State diagram representation of example MMS commands
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6.5 Tape Recorder

Finally, it is useful to consider a user interface for a system that is less tied to the conventional
sort of terminal input and output seen in the previous examples, to see how the specification tech-
niques can apply to hardware used for newer, less conventional user interfaces. For a simple example
of a system with nontext input and output primitives, the most basic type of tape recorder is specified
using several notations.

Its only controls are push buttons for PLAY, RECORD, Fast Forward (FF), REWIND, STOP,
and EJECT. Pressing each of these corresponds to a terminal symbol in the specifications below. In
addition the user can INSERT a tape and can change the setting of a volume control (CHANGE-
VOLUME). In defining actions, the symbol vCHANGE-VOLUME denotes the new value to which
the control was set in the most recent CHANGE-VOLUME operation. It is assumed that, whenever
a new tape is inserted, it is positioned at the beginning of the tape (i.e., this resembles a reel, rather
than cartridge, recorder). Finally, to add an interesting detail, assume that the recorder automatically
stops whenever it reaches the end of the tape.

6.5.1 BNF

/*
*Simple Tape Recorder in BNF
*/

operate_recorder::= change vol* insertandrun

insertandrun::= NULL

0 INSERT II: =start of tape) run* EJECT

run::= changevol* prff* changevol*

prff::= PLAY (begin playing from location 1 at volume v,
begin increasing 1 at low speed)
changevol* (continue playing at volume v}
stoporeot (cease increasing 1, cease playing)

RECORD (begin recording from location 1 at volume v,
begin increasing 1 at low speed)
changevol* (continue recording at volume v)
stoporeot (cease increasing 1, cease recording)

REWIND (begin decreasing 1 at high speed)
change_vol* stoporbot (cease decreasing 1)

FF (begin increasing 1 at high speed)
change_vol* stoporeot (cease increasing 1}

stopor eot: := STOP

NULL (cond: l=end of tape)

stopor bot: := STOP
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NULL (cond: l=beginning of tape)

changevol: := CHANGEVOLUMEtv: =CHANGEVOLUME}

6.5.2 Graphic State Diagram

Figure 4 presents a state diagram specification of the same tape recorder.

6.5.3 Text State Diagram

/*
*Simple Tape Recorder in Text State Diagram Notation
*/

operate_recorder - end

empty: CHANGEVOLUME - empty act: v:=vCHANGEVOLUME;

& INSERT - stopped act: l:=start of tape;

& ANY - end

stopped: CHANGEVOLUME - stopped act: v:=vCHANGEVOLUME;

& PLAY - playing act: (begin playing from location 1 at volume v;
begin increasing 1 at low speed);

& RECORD - recording act: (begin recording at location 1 at volume
v; begin increasing 1 at low speed);

& REWIND - rewinding act: begin decreasing 1 at high speed;

& FF - ffing act: begin increasing 1 at high speed;

& EJECT - empty

playing: CHANGEVOLUME - playing act: iv:=vCHANGEVOLUME; continue
playing at volume v};

& STOP - stopped act: (cease increasing l; cease playing);

& ANY cond: l=end of tape; - stopped act: (cease increasing 1; ceasE
playing};

recording: CHANGEVOLUME -recording act: tv:=vCHANGEVOLUME;
continue recording at volume v);

& STOP - stopped act: (cease increasing l; cease recording);

& ANY cond: l=end of tape - stopped act: { cease increasing 1; cease
recording);
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operate recorder

CHANGEVO E AB

/ ST PLAY

CGVO E AlCNGVO 3ANG E A12

CHiANGEVO E Al CHANGE-VD A RECCND

INSERT A2 i _

<~~~~~~~~~~~~~N _ CHANG VOUM A 16

FF A CHANGE E A2e

(1) Act: v:=vCHANGE-VOLUME

(2) Act: l:=start of tape
(3) Act: v:=vCHANGE-VOLUME

(4) Act: { begin playing from location I at volume v; begin increasing I at low speed }
(5) Act: { begin recording at location I at volume v; begin increasing I at low speed }
(6) Act: begin decreasing I at high speed

(7) Act: begin increasing I at high speed

(8) Act: { v:=vCHANGE-VOLUME; continue playing at volume v }
(9) Act: { cease increasing 1; cease playing }
(10) Cond: I=end of tape

(11) Act: { cease increasing l; cease playing }
(12) Act: { v:=vCHANGE-VOLUME; continue recording at volume v }
(13) Act: { cease increasin.g l; cease recording }
(14) Cond: l=end of tape
(15) Act: { cease increasing 1; cease recording }
(16) Act: v:=vCHANGE-VOLUME

(17) Act: cease decreasing l

(18) Cond: l=start of tape

(19) Act: cease decreasing l

(20) Act: v:=vCHANGE-VOLUNME

(21) Act: cease increasing l

(22) Cond: I=end of tape

(23) Act: cease increasing I

Fig. 4 - State diagram representation of tape recorder

48



NRL REPORT 8948

rewinding: CHANGEVOLUME -rewinding act: v:=vCHANGEVOLUME;

& STOP - stopped act: cease decreasing 1;

& ANY cond: l=start of tape; - stopped act: cease decreasing 1;

ffing: CHANGE-VOLUME - ffing act: v:=vCHANGEVOLUME;

& STOP -stopped act: cease increasing l;

& ANY cond: l=end of tape; - stopped act: cease increasing 1;

7. CONCLUSIONS

Nearly all techniques that have been used to specify user interfaces for interactive systems are
based on BNF or state transition diagrams. While the two are formally equivalent, their surface differ-
ences have an important effect on their comprehensibility. In particular, notations based on state tran-
sition diagrams explicitly contain the concept of a state and the rules associated with it, while it is impli-
cit in BNF-based notations. Since the concept of state is important in representing sequence in the
behavior of an interactive system, state diagrams are preferable to BNF in this regard.

Existing techniques based on state diagrams vary considerably in their syntax and expressive abil-
ity. A synthesis of the best features of several such notations is recommended. Moreover, in either
notation, the use and careful choice of meaningful nonterminal symbols is vital to the overall clarity of
the specification.

An important criterion for a user interface specification is that its principal constructs-the main
nonterminal symbols and states-represent concepts that will be meaningful to users and helpful to
them in constructing their own mental models of the system. In this way, a mapping can be maintained
from the user interface specification to the user documentation.

A synthesis of the features of several state diagram-based notations was thus selected to specify
the user interface for a prototype military message system. The explicit description of states in this
notation makes the sequence of actions clearer than in BNF. In addition, some of the states correspond
to users' own notions of what a system does ("text entry" state, "logged-out" state).
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compiler-compiler.

25. A.V. Aho and S.C. Johnson, "LR Parsing," in Computing Surveys 6 (1974), pp. 99-124.

Describes parsing techniques that can be used with BNF specifications.

26. A.V. Aho and J.D. Ullman, Principles of Compiler Design, (Addison-Wesley, Reading, Mass.,

1977).

Describes the theory of parsing techniques for BNF specifications.
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27. R.S. Fenchel, "An Integral Approach to User Assistance," ACM SIGSOC Bulletin 13(2-3), 98-104
(1982).

Uses a BNF specification to describe a user interface to an interpreter. The interpreter
can then provide interactive help messages using information in the BNF specification.

28. H.W. Lawson, Jr., M. Bertran, and J. Sanagustin, "The Formal Definition of Man/Machine Com-
munication," Software - Practice and Experience 8, 51-58 (1978).

Uses BNF plus actions to specify a fairly simple interactive user interface.

29. D.W. Embley, "Empirical and Formal Language Design Applied to a Unified Control Construct
for Interactive Computing," International Journal of Man-Machine Studies 10, 197-216 (1978).

Uses a BNF description of a static user interface (a programming language control con-
struct) to predict user performance.

30. B. Shneiderman, "Multi-party Grammars and Related Features for Defining Interactive Systems,"
IEEE Transactions on Systems, Man, and Cybernetics SMC-12 (March 1982), pp. 148-154.

Describes a new type of BNF grammar in which each nonterminal symbol is associated
with either the user or the computer (or one of several parties to a multi-way conversa-
tion).

31. S. Feyock, "Transition Diagram-Based CAT/HELP Systems," International Journal of Man-Machine
Studies 9, 399-413 (1977).

Uses a state diagram as the data base for a user help facility.

32. J. Darlington, W. Dzida, and S. Herda, "The Role of Excursions in Interactive Systems," Interna-
tional Journal of Man-Machine Studies 18, 101-112 (1983).

Examines psychological issues related to user models of interactive systems. In particu-
lar, the authors find that a state transition automaton is a good representation of such
user models.

33. S.P. Guest, "The Use of Software Tools for Dialogue Design," International Journal of Man-
Machine Studies 16, 263-285 (1982).

34. H. Thimbleby, "Character-level Ambiguity: Consequences for User Interface Design," Interna-
tional Journal of Man-Machine Studies 16, 211-225 (1982).

35. J.W. Brown, "Controlling the Complexity of Menu Networks," Comm. ACM 25, 412-418 (1982).

36. E. Denert, "Specifications and Design of Dialogue Systems with State Diagrams," International
Computing Symposium, North Holland, 1977, pp. 417-424.

Uses state diagrams to describe an interactive system. To implement the system, the
state diagram is translated directly into an ALGOL program.

37. D.C. Engelbart and W.K. English, "A Research Center for Augmenting Human Intellect," Proc.
1968 Fall Joint Computer Conference, AFIPS, 1968, pp. 395-410.

38. D.L. Parnas, "On the Use of Transition Diagrams in the Design of a User Interface for an
Interactive Computer System," Proc. 24th National ACM Conference, 1969, pp. 379-385.

Proposes state diagrams for describing user interfaces. The diagrams describe transi-
tions among terminal states, rather than all possible system states.
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39. M.R. Barnett, "Implementing Interactive Systems in PL/1,1' Proc. ONLINE 72 Conference,
(1972), pp. 265-289.

Uses a simple one-level state diagram to represent the user interface to a small system.
Most of the article is concerned with the specific details associated with implementing
such a user interface in PL/1.

40. B. Dwyer, "A User-Friendly Algorithm," Comm. ACM 24, 556-561 (1981).

Uses a state diagram representation to drive a fairly simple program that implements
the user interface described by the diagram.

41. D.J. Kasik, "Controlling User Interaction," Computer Graphics 10, 109-115 (1976).

Describes theory and implementation of a triply-linked tree for representing the user
interface of menu-driven systems.

42. MUMPS Development Committee, MUMPS Language Standard, American National Standards
Institute, New York (1977).

Uses state diagrams to describe the MUMPS computer language.

43. A.I. Wasserman and S.K. Stinson, "A Specification Methof for Interactive Information Systems,"
Proc. Specifications of Reliable Software Conference, 1979, pp. 68-79.

Uses a state transition diagram to specify the user interface to a simple example system.

44. A.I. Wasserman and D.T. Shewmake, "Rapid Prototyping of Interactive Information Systems,"
ACM SIGSOFT Software Engineering Notes 7, 1982, pp. 171-180.

Describes a prototype builder that uses a state transition diagram specification of a user
interface. Semantic actions are given as Unix Shell commands.

45. M.S. Fox and A.J. Palay, "The BROWSE System: Phase II and Future Directions," ZOG Memo,
Computer Science Dept., Carnegie-Mellon University, 1979.

46. G. Robertson, A. Newell, and K. Ramakrishna, "ZOG: A Man-Machine Communication Philoso-
phy," Carnegie-Mellon University Technical Report, 1977.

47. G. Robertson, D. McCracken, and A. Newell, "The ZOG Approach to Man-Machine Communica-
tion," Carnegie-Mellon University Technical Report, 1979.

48. J. Schultz and L. Davis, "The Technology of PROMIS," Proceedings of the IEEE 67, 1979, pp.
1237-1244.

49. G.V. Bochmann, "Finite State Description of Communication Protocols," Computer Networks 2,
361-372 (1978).

Uses coupled finite state automata to represent two machines communicating with each
other via a protocol. Then, it is possible to prove properties of the protocol using the
state transition diagram representation.

50. C.A. Sunshine, "Survey of Protocol Definition and Verification Techniques," Computer Networks 2
(1978), pp. 346-350.

Discusses techniques that have been used to describe (machine-to-machine) communi-
cation protocols. Most of them are based either on state diagram notation or else on a
procedural description of the algorithm.
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51. J.E. Hopcroft and J.D. Ullman, Formal Languages and Their Relation to Automata, (Addison-
Wesley, Reading, Mass., 1969).

52. J.F. Hueras, "A Formalization of Syntax Diagrams as k-Deterministic Language Recognizers,"
Master's thesis, University of California, Irvine, California, 1978.

Investigates state diagram notation with sub-diagram calls and relates it to the formal

models of automata theory.

53. T.P. Moran, "The Command Language Grammar: A Representation for the User Interface of
Interactive Computer Systems," International Journal of Man-Machine Studies 15, 3-50 (1981).

The Command Language Grammar attempts to capture the knowledge a user has about

a system. It yields a very detailed description of several levels of a command language

system.

54. J. Barron, "Dialogue and Process Design for Interactive Information Systems Using Taxis," Proc.
ACM SIGOA Conference on Office Information Systems (1982), pp. 12-20.

55. M.I. Streib, F.A. Glenn, and R.J. Wherry, "The Human Operator Simulator," Technical Report
1320, Analytics Inc., 1978.

Describes an elaborate software system for simulating human operator performance

(hand movements, short-term memory recall, and the like).

56. M. Green, "A Methodology for the Specification of Graphical User Interface," Computer Graphics
15(3), 99-108 (1981).

Uses a specification technique much like software module specifications to describe the

commands a user can give.

57. B.W. Kernighan and D.M. Ritchie, The C Programming Language (Prentice-Hall, Englewood
Cliffs, N.J., 1978).

58. S.C. Johnson, "YACC: Yet Another Compiler-Compiler," in UNIX Programmer's Manual, Bell
Laboratories, Murray Hill, N.J., 1979.

59. M.E. Lesk and E. Schmidt, "Lex - A Lexical Analyzer Generator," in UNIX Programmer's
Manual, Bell Laboratories, Murray Hill, N.J. (1979).
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